题目内容
一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.
![]()
(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ,周长为 ;
(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 ,周长为 ;![]()
(3)如果将△MNK绕M旋转到不同于图1、图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.
解:(1)
,
(1+
)a;…
(2)
,2a;
(3)猜想:重叠部分的面积为
。
理由如下:
过点M分别做AC、BC的垂线MH、MG,垂足为H、G。
为说明方便,不妨设MN与AC的交点为E,MK与BC的交点为F。
由于M是△ABC斜边AB的中点,AC=BC=a
所以MH=MG=![]()
又因为 ∠HME=∠GMF
所以 Rt△MHE≌Rt△MGF分
因此阴影部分的面积等于正方形CGMH的面积。
而正方形CGMH的面积是MG?MH=
×
=![]()
所以阴影部分的面积是
。
练习册系列答案
相关题目