题目内容
【题目】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
(1)根据如图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2= .
(3)小明同学用如图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z= .
(4)两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成如图4.请你根据如图中图形的关系,写出一个代数恒等式,并写出推导过程.
![]()
![]()
【答案】(1)
;(2)30;(3)9;(4)![]()
【解析】
(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;
(2)根据(1)中结果,求出所求式子的值即可;
(3)根据已知等式,做出相应图形,即可得到结论;
(4)分别表示出各个图形的面积,根据面积关系,即可得出结论.
解:(1)根据面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)∵a+b+c=10,ab+bc+ac=35,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=100﹣70=30;
(3)根据题意得:(2a+b)(a+2b)=
,∴x=2,y=5,z=2,∴x+y+z=9;
(4)
,理由:因为三个图形拼成一个梯形,所以
即
.
练习册系列答案
相关题目