题目内容

如图,在平行四边形ABCD和平行四边形AECF的顶点,D,E,F,B在一条直线上,则下列等式成立的是


  1. A.
    AE=CE
  2. B.
    CE=CF
  3. C.
    DE=BF
  4. D.
    DE=EF=BF
C
分析:平行四边形的对比平行且相等,所以AB=DC,AD=BC,所以∠ABD=∠CDF,∠AEB=∠CFD,所以易证△AEB≌△CFD,故各个结论可证.
解答:∵四边形AECF是平行四边形
∴AE=CF,CE=AF(∴A、B不成立)
∵在平行四边形AECF和平行四边形ABCD中,AE∥CF,AB∥CD
∴∠ABD=∠CDF,∠AEB=∠CFD
∵AB=CD
∴△AEB≌△CFD
∴DF=BE
∴DE=BF(∴C成立,D不成立)
故选C.
点评:此题主要考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等.综合利用了全等三角形的判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网