题目内容
﹣3+(﹣5)﹣(﹣7)
任意掷一枚均匀的骰子,掷出的点数不小于3的概率为 ______________.
一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为_________平方分米.
若x<0,化简=_____.
×(﹣9)
定义:A={b,c,a},B={c},A∪B={a,b,c},若 M={﹣1},N={0,1,﹣1},则 M∪N={______}.
(﹣3)2的底数是__________,指数是_______________.
如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.
(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1,AC=3时,求BF的长.
如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过__次操作.