题目内容
如图,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC交AB于D,交AC于E,若AB=8cm,AC=9cm,则△ADE的周长是________cm.
17
分析:先根据角平分线的定义及平行线的性质证明△BDF和△CEF是等腰三角形,再由等腰三角形的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=17cm.
解答:∵BF平分∠ABC,∴∠DBF=∠CBF,
∵DE∥BC,∴∠CBF=∠DFB,
∴∠DBF=∠DFB,
∴BD=DF,
同理FE=EC,
∴△AED的周长=AD+AE+ED=AB+AC=8+9=17cm.
故答案为17.
点评:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.
分析:先根据角平分线的定义及平行线的性质证明△BDF和△CEF是等腰三角形,再由等腰三角形的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=17cm.
解答:∵BF平分∠ABC,∴∠DBF=∠CBF,
∵DE∥BC,∴∠CBF=∠DFB,
∴∠DBF=∠DFB,
∴BD=DF,
同理FE=EC,
∴△AED的周长=AD+AE+ED=AB+AC=8+9=17cm.
故答案为17.
点评:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.
练习册系列答案
相关题目
| A、60° | B、80° | C、65° | D、40° |