题目内容
把抛物线向右平移个单位,再向下平移个单位,即得到抛物线( )
A. y=-(x+2) 2+3 B. y=-(x-2) 2+3 C. y=-(x+2) 2-3 D. y=-(x-2) 2-3
如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C. 2 D. 2
证明定理.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
已知:如图,A为线段BC外任意一点,且AB=AC.
求证:点A在BC的垂直平分线上.
已知点P(x,y)的坐标满足方程(x+3)2+=0,求点P分别关于x轴,y轴以及原点的对称点坐标.
某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为___元时,该服装店平均每天的销售利润最大.
抛物线的顶点坐标是( ).
A. B. C. D.
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是( )
A. 44° B. 54° C. 72° D. 53°
如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DF交AB于点G.若BC=4,则线段EG的长为__.