题目内容

如图,△ABC≌△ADE,B点的对应顶点是D点,若∠BAD=100°,∠CAE=40°,求∠BAC的度数.

解:∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠CAE=∠DAE-∠CAE,
即∠BAE=∠DAC,
∵∠BAD=100°,∠CAE=40°,
∴∠BAE=(∠BAD-∠CAE)=(100°-40°)=30°,
∴∠BAC=∠BAE+∠CAE=30°+40°=70°.
分析:根据全等三角形对应角相等可得∠BAC=∠DAE,然后求出∠BAE=∠DAC,再根据∠BAC=∠BAE+∠CAE,代入数据进行计算即可得解.
点评:本题考查了全等三角形对应角相等的性质,准确识图并求出∠BAE的度数是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网