题目内容
【题目】在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=a∠C;④∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】
根据所给的4个条件分别求出4个条件下△ABC中的最大角的度数,再进行判断即可.
①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,
∴∠C=180°×
=90°,
∴此时△ABC是直角三角形;
②∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,
∴5∠C=180°,解得∠C=36°,
∴∠A=∠B=72°,
∴此时△ABC不是直角三角形;
③∵∠A=∠B=a∠C,∠A+∠B+∠C=180°,
∴(2a+1)∠C=180°,解得∠C=
,
∴∠A=∠B=
,
∴此时△ABC中三个内角的度数是不确定的,
∴不能确定△ABC是否是直角三角形;
④∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,
∴∠C=180°×
=90°,
∴此时△ABC是直角三角形.
综上所述,根据上述条件能够确定△ABC是直角三角形的有2个.
故选B.
练习册系列答案
相关题目