ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÔĶÁ²ÄÁÏ£º¸÷Àà·½³ÌµÄ½â·¨
Çó½âÒ»ÔªÒ»´Î·½³Ì£¬¸ù¾ÝµÈʽµÄ»ù±¾ÐÔÖÊ£¬°Ñ·½³Ìת»¯Îªx=aµÄÐÎʽ£®Çó½â¶þÔªÒ»´Î·½³Ì×飬°ÑËüת»¯ÎªÒ»ÔªÒ»´Î·½³ÌÀ´½â£»ÀàËÆµÄ£¬Çó½âÈýÔªÒ»´Î·½³Ì×飬°ÑËüת»¯Îª½â¶þÔªÒ»´Î·½³Ì×飮Çó½âÒ»Ôª¶þ´Î·½³Ì£¬°ÑËüת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´½â£®Çó½â·Öʽ·½³Ì£¬°ÑËüת»¯ÎªÕûʽ·½³ÌÀ´½â£¬ÓÉÓÚ¡°È¥·Öĸ¡±¿ÉÄܲúÉúÔö¸ù£¬ËùÒÔ½â·Öʽ·½³Ì±ØÐë¼ìÑ飮¸÷Àà·½³ÌµÄ½â·¨²»¾¡Ïàͬ£¬µ«ÊÇËüÃÇÓÐÒ»¸ö¹²Í¬µÄ»ù±¾Êýѧ˼Ïë
ת»¯£¬°Ñδ֪ת»¯ÎªÒÑÖª£®
Óá°×ª»¯¡±µÄÊýѧ˼Ï룬ÎÒÃÇ»¹¿ÉÒÔ½âһЩÐµķ½³Ì£®ÀýÈ磬һԪÈý´Î·½³Ìx3+x2-2x=0£¬¿ÉÒÔͨ¹ýÒòʽ·Ö½â°ÑËüת»¯Îªx(x2+x-2)=0£¬½â·½³Ìx=0ºÍx2+x-2=0£¬¿ÉµÃ·½³Ìx3+x2-2x=0µÄ½â£®
£¨1£©ÎÊÌ⣺·½³Ìx3+x2-2x=0µÄ½âÊÇx1=0,x2= £¬x3= £»
£¨2£©ÍØÕ¹£ºÓá°×ª»¯¡±Ë¼ÏëÇó·½³Ì
µÄ½â£»
£¨3£©Ó¦ÓãºÈçͼ£¬ÒÑÖª¾ØÐÎ²ÝÆºABCDµÄ³¤AD=8m£¬¿íAB=3m£¬Ð¡»ª°ÑÒ»¸ù³¤Îª10mµÄÉþ×ÓµÄÒ»¶Ë¹Ì¶¨ÔÚµãB£¬ÑØ²ÝÆº±ßÑØBA£¬AD×ßµ½µãP´¦£¬°Ñ³¤ÉþPB¶ÎÀÖ±²¢¹Ì¶¨ÔÚµãP£¬È»ºóÑØ²Ýƺ±ßÑØPD¡¢DC×ßµ½µãC´¦£¬°Ñ³¤ÉþʣϵÄÒ»¶ÎÀÖ±£¬³¤ÉþµÄÁíÒ»¶ËÇ¡ºÃÂäÔÚµãC£®ÇóAPµÄ³¤£®
![]()
¡¾´ð°¸¡¿(1)-2£¬1£»£¨2£©x=3£»£¨3£©4m.
¡¾½âÎö¡¿
£¨1£©Òòʽ·Ö½â¶àÏîʽ£¬È»ºóµÃ½áÂÛ£»
£¨2£©Á½±ßƽ·½£¬°ÑÎÞÀí·½³Ìת»¯ÎªÕûʽ·½³Ì£¬Çó½â£¬×¢ÒâÑé¸ù£»
£¨3£©ÉèAPµÄ³¤Îªxm£¬¸ù¾Ý¹´¹É¶¨ÀíºÍBP+CP=10£¬¿ÉÁгö·½³Ì£¬ÓÉÓÚ·½³Ìº¬ÓиùºÅ£¬Á½±ßƽ·½£¬°ÑÎÞÀí·½³Ìת»¯ÎªÕûʽ·½³Ì£¬Çó½â£¬
½â£º£¨1£©
£¬
£¬
![]()
ËùÒÔ
»ò
»ò![]()
£¬
£¬
£»
¹Ê´ð°¸Îª£º
£¬1£»
£¨2£©
£¬
·½³ÌµÄÁ½±ßƽ·½£¬µÃ![]()
¼´![]()
![]()
»ò![]()
£¬
£¬
µ±
ʱ£¬
£¬
ËùÒÔ
²»ÊÇÔ·½³ÌµÄ½â£®
ËùÒÔ·½³Ì
µÄ½âÊÇ
£»
£¨3£©ÒòΪËıßÐÎ
ÊǾØÐΣ¬
ËùÒÔ
£¬![]()
Éè
£¬Ôò![]()
ÒòΪ
£¬
£¬![]()
![]()
![]()
Á½±ßƽ·½£¬µÃ![]()
ÕûÀí£¬µÃ![]()
Á½±ßƽ·½²¢ÕûÀí£¬µÃ![]()
¼´![]()
ËùÒÔ
£®
¾¼ìÑ飬
ÊÇ·½³ÌµÄ½â£®
´ð£º
µÄ³¤Îª
£®