题目内容

16、已知正整数p,q都是质数,并且7p+q与pq+11也都是质数,则pq的值是
8或9
分析:根据质数的特征可知pq+11必为正奇质数,pq为偶数,从而确定p=2或q=2.再分情况讨论求解即可.
解答:解:pq+11>11且pq+11是质数,
∴pq+11必为正奇质数,pq为偶数,而数p、q均为质数,故p=2或q=2.
当p=2时,有14+q与2q+11均为质数.
当q=3k+1(k≥2)时,则14+q=3(k+5)不是质数;
当q═3k+2(k∈N)时,2q+11=3(2k+5)不是质数,
因此,q=3k,且q为质数,故q=3.
当q=2时,有7p+2与2p+11均为质数.
当p═3k+1(k≥2)时,7p+2=3(7k+3)不是质数;
当p=3k+2(k∈N)时,2p+11=3(2k+5)不是质数,
因此,p=3k,当p为质数,故p=3.
故pq=23=8或pq=32=9.
故答案为:8或9.
点评:本题考查了质数的基本性质,解题的关键是确定p=2或q=2,及分类思想的运用,有一点的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网