题目内容
计算:(y-x)3•(x-y)n+2(x-y)n+1•(y-x)2
解:原式=-(x-y)3•(x-y)n+2(x-y)n+1•(x-y)2
=-(x-y)3+n+2(x-y)n+3
=(x-y)n+3.
分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求解即可.
点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:底数不变,指数相加.
=-(x-y)3+n+2(x-y)n+3
=(x-y)n+3.
分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求解即可.
点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:底数不变,指数相加.
练习册系列答案
相关题目