题目内容

如图,已知:等腰△ABC的腰长为8cm,过底边BC上任一点D作两腰的平行线分别交两腰于E、F,则四边形AEDF的周长为________cm.

16
分析:根据等腰三角形和平行四边形的性质,可推出DF=CF、BE=DE,从而将四边形AEDF的周长转化到等腰△ABC的腰上求解.
解答:∵在等腰△ABC中,∠B=∠C,
∵DF∥AB,
∴∠FDC=∠B.
∴∠FDC=∠C.
∴DF=CF.
同理,BE=DE.
∴四边形AEDF的周长=BE+AE+AF+CF=16.
点评:此题要求周长,就要先求出它的边长,即可利用平行四边形的性质从题中找出等量关系,将平行四边形的周长转化为三角形的两腰长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网