题目内容
如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,
),点C的坐标为(
,0),点P为斜边OB上的一动点,则PA+PC的最小值为( ).

| A. | B. |
| C. | D.2 |
B.
试题分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案:
作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小.
∵DP=PA,∴PA+PC=PD+PC=CD.
∵B(3,
由勾股定理得:OB=2
由三角形面积公式得:
∵∠AMB=90°,∠B=60°,∴∠BAM=30°.
∵∠BAO=90°,∴∠OAM=60°.
∵DN⊥OA,∴∠NDA=30°.∴AN=
由勾股定理得:DN=
∵C(
在Rt△DNC中,由勾股定理得:
∴PA+PC的最小值是
故选B.
考点: 1.轴对称(最短路线问题);2.坐标与图形性质;3.勾股定理;4.含30度角直角三角形的性质.
练习册系列答案
相关题目