题目内容
如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为( )
A. 30° B. 40° C. 50° D. 60°
如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.
求证:△ACE≌△ACF.
下列说法不正确的是( )
A. 0既不是正数,也不是负数 B. 绝对值最小的数是0
C. 相反数等于它本身的数是0 D. 0的倒数是0
如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC.图中AE 与BD的数量关系是_______.
如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )
A. 135° B. 130° C. 125°
D. 120°
如图1,延长⊙O的直径AB至点C,使得BC=AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.
(1)∠C的最大度数为 ;
(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;
(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.
在平面直角坐标系中,Rt△OAB的顶点A的坐标为( ,1),若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是_______.
类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.
(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD为等邻边四边形.
(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.
(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.
如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( )
A. 7m B. 8m C. 9m D. 10m