搜索
题目内容
如下图以直角三角形三条边为边分别向外作三个正方形,其中两个正方形的面积分别为225和289,则图中正方形字母A所代表的正方形的面积为
[ ]
A.4
B.8
C.16
D.64
试题答案
相关练习册答案
D
练习册系列答案
智多星归类复习测试卷系列答案
智多星模拟加真题测试卷系列答案
毕业升学考卷大集结系列答案
毕业升学冲刺必备方案系列答案
状元坊广东中考备考用书系列答案
百年学典中考风向标系列答案
百校联盟中考冲刺名校模拟卷系列答案
夺A闯关一路领先中考模拟密卷系列答案
中考先锋滚动迁移复习法系列答案
琢玉计划寒假生活系列答案
相关题目
阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m
2
-1)和c=
1
2
(m
2
+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m
2
-n
2
,b=2mn,c=m
2
+n
2
是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
棵.
5、如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S
1
,S
2
,S
3
,则S
1
,S
2
,S
3
之间的关系是( )
A、S
1
+S
2
>S
3
B、S
1
+S
2
=S
3
C、S
1
+S
2
<S
3
D、无法确定
4、如下图以直角三角形三条边为边分别向外作三个正方形,其中两个正方形的面积分别为225和289,则图中正方形字母A所代表的正方形的面积为( )
A、4
B、8
C、16
D、64
如下图以直角三角形三条边为边分别向外作三个正方形,其中两个正方形的面积分别为225和289,则图中正方形字母A所代表的正方形的面积为
A.
4
B.
8
C.
16
D.
64
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案