题目内容

已知a1,a2,…,an是正整数,且a1≤a2≤…≤an,a1+a2+…+an=10,a12+a22+…+an2=24,则(a1,a2,…,an)=
(1,1,2,3,3)或(1,1,1,1,2,4)(对一个给3分)
(1,1,2,3,3)或(1,1,1,1,2,4)(对一个给3分)
分析:由于a1,a2,…,an是正整数,52>24,能确定1≤an≤4,再分别分情况讨论,①当an=1时;②当an=2时;③当an=3时;④当an=4时,注意a1≤a2≤…≤an,在每一种情况里又需要分情况讨论.
解答:解:∵52>24,
∴an≤4,
又∵an是正整数,
∴1≤an≤4,
①当an=1时,∵a1≤a2≤…≤an,a1+a2+…+an=10,
∴a1=a2=…=an=1(n=10),
∴a12+a22+…+a102=10,
又∵a12+a22+…+an2=24,
∴此解不成立;
②当an=2时,∵a1≤a2≤…≤an,a1+a2+…+an=10,
∴a n-1=1或a n-1=2,
当a n-1=1时,a n-2必等于1,以此类推,
∴a1=a2=a3=a4=a5=a6=a7=a8=1(n=9),
∴a12+a22+…+a92=12,
又∵a12+a22+…+an2=24,
∴an-1=1不成立;
当a n-1=2时,a n-2可等于1,也可等于2,
那么就有a1=a2=a3=a4=a5=a6=1(n=8),
∴a12+a22+…+a82=14≠24,
∴此解不成立;
或a1=a2=a3=a4=1,a5=a6=a7=2(n=7),
∵a12+a22+…+a72=16≠24,
∴此解不成立;
或a1=a2=1,a3=a4=a5=a6=2(n=6),
∵a12+a22+…+a62=18≠24,
∴此解不成立;
或a1=a2=a3=a4=a5=2(n=5),
∵a12+a22+…+a52=20≠24,
∴此解不成立;
∴当an=2时,没有符合题意的解;
③当an=3时,∵a1≤a2≤…≤an,a1+a2+…+an=10,
∴a n-1=1或a n-1=2或a n-1=3,
当a n-1=1时,a n-2必等于1,
那么a1=a2=…=a7=1,a8=3(n=8),
∵a12+a22+…+a82=16≠24,
∴此解不成立;
当a n-1=2时,a n-2可以等于2,也可以等于1,
当a1=a2=…=a5=1,a6=2,a7=3(n=7),
∵a12+a22+…+a72=18≠24,
∴此解不成立;
或a1=a2=a3=1,a4=a5=2,a6=3(n=6),
∵a12+a22+…+a62=20≠24,
∴此解不成立;
或a1=1,a2=a3=a4=2,a5=3(n=5),
∵a12+a22+…+a52=22≠24,
当a n-1=3时,a n-2可以等于3,也可以等于2,还可以等于1,
当a n-2=3时,则a1=1,a2=a3=a4=3(n=4),
∵a12+a22+…+a42=28≠24,
∴此解不成立;
或a n-2=2时,则a1=a2=1,a3=2,a4=a5=3(n=5),
∵a12+a22+…+a52=24,
∴此解成立;
或a1=a2=2,a3=a4=3(n=4),
∵a12+a22+…+a42=26≠24,
∴此解不成立;
④当an=4时,∵a1≤a2≤…≤an,a1+a2+…+an=10,
∴a n-1=1或a n-1=2或a n-1=3或a n-1=4,
当a n-1=1,必有a1=a2=…=a6=1,a7=4(n=7),
∵a12+a22+…+a72=22≠24,
∴此解不成立;
当a n-1=2,有a1=a2=a3=a4=1,a5=2,a6=4(n=6),
∵a12+a22+…+a62=24,
∴此解成立;
或a1=a2=1,a3=a4=2,a5=4(n=5),
∵a12+a22+…+a52=26≠24,
∴此解不成立;
或a1=a2=a3=2,a4=4(n=4),
∵a12+a22+…+a42=28≠24,
∴此解不成立;
当a n-1=3时,有a1=a2=a3=1,a4=3,a5=4(n=5),
∵a12+a22+…+a52=28≠24,
∴此解不成立;
或a1=1,a2=2,a3=3,a4=4(n=4),
∵a12+a22+…+a42=30≠24,
∴此解不成立;
或a1=a2=3,a3=4(n=3),
∵a12+a22+…+a32=34≠24,
∴此解不成立;
当a n-1=4,只有a1=a2=1,a3=a4=4(n=4),
∵a12+a22+…+a42=34≠24,
∴此解不成立;
∴综上所述,符合条件的解有两组:(1,1,2,3,3);(1,1,1,1,2,4).
故答案是:(1,1,2,3,3);(1,1,1,1,2,4).
点评:本题考查了等式的证明.可以先让选择的数符合其中一个条件,再看是否符合第二个条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网