题目内容
一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为 ( )
A. 7.5米 B. 8米 C. 14.7米 D. 15.75米
多项式4xy2-3xy3+12的次数为( )
A. 3 B. 4 C. 6 D. 7
某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
如图所示,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.
(1)图中b1,b2,l1,l2满足怎样的关系式?
(2)若b1=3.2 cm,b2=2 cm,①号“E”的测量距离l1=8 cm,要使测得的视力相同,则②号“E”的测量距离l2应为多少?
为测量操场上悬挂国旗的旗杆的高度,设计的测量方案如图所示:标杆高度CD=3m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E、C、A三点共线,则旗杆AB的高度为________ 米.
已知二次函数的图象如图所示,求此抛物线的解析式.
已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a______b.
将二次函数化成的形式是( )
A. y=(x+2)2-2 B. y=(x+2)2+2 C. y=(x-2)2-2 D. y=(x-2)2+2
如图,二次函数y=ax2+bx+2(a≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C,已知点 A(-4,0),B(1,0).
(1)求抛物线的解析式;
(2)若点 D(m,n) 是抛物线在第二象限的部分上的一动点,四边形 的面积为 ,求 关于 m 的函数关系;
(3)若点 E 为抛物线对称轴上任意一点,当以 A,C,E 为顶点的三角形是直角三角形时,请求出满足条件的所有点 E 的坐标.