题目内容
分解因式(2x+3)2﹣x2的结果是( )
A. 3(x2+4x+3) B. 3(x2+2x+3) C. (3x+3)(x+3) D. 3(x+1)(x+3)
如图,甲袋内共有4张牌,牌面分别标记数字1,2,3,4;乙袋内共有3张牌,牌面分别标记数字2,3,4.甲袋中每张牌被取出的机会相等,且乙袋中每张牌被取出的机会也相等。分别从甲乙两袋中各随机抽取一张牌,请用列表或画树形图的方法,求抽出的两张牌面上的数字之和大于6的概率。(8分)
在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是( )
A. AC=BD,AB∥CD,AB=CD
B. AD∥BC,∠A=∠C
C. AO=BO=CO=DO,AC⊥BD
D. AO=CO,BO=DO,AB=BC
计算:(+π)0﹣2|1﹣sin30°|+()﹣1.
如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为( )
A.5 B.12 C.10070 D.10080
如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .
的值等于( )
A. 4 B. ﹣4 C. ±4 D.
一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .