题目内容
【题目】一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3、…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2016B2016C2016D2016的边长是_____.
![]()
【答案】(
)2015.
【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=
,
则B2C2=
=(
)1,
同理可得:B3C3=
=(
)2,
故正方形AnBnCnDn的边长是:(
)n﹣1,
则正方形A2016B2016C2016D2016的边长为:(
)2015,
故答案为:(
)2015.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
练习册系列答案
相关题目