题目内容
【题目】如图,矩形纸片
中,已知
,
,点
在
边上,沿
折叠纸片,使点
落在点
处,连结
,当
为直角三角形时,
的长为______.
![]()
【答案】3或![]()
【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
分两种情况:①当∠EFC=90°,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=4,
∴BC=AD=4,
在Rt△ABC中,AC=![]()
设BE=x,则CE=BC-BE=4-x,
由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4-x)2,
解得x=
;
②当∠CEF=90°,如图2
由翻折的性质可知∠AEB=∠AEF=45°,
∴四边形ABEF是正方形,
∴BE=AB=3,
故BE的长为3或![]()
![]()
练习册系列答案
相关题目
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价 | 20 | 40 |
零售价 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?