搜索
题目内容
11、若点A(a,b)和点B(b,a)关于原点对称的点,则a+b=
0
.
试题答案
相关练习册答案
分析:
熟悉:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),根据上述结论就可以得到a=-b,则a+b=0.
解答:
解:根据中心对称的性质,得a=-b,则a+b=0.
点评:
关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.
练习册系列答案
高中新课程评价与检测暑假作业辽宁师范大学出版社系列答案
暑假衔接培优教材浙江工商大学出版社系列答案
暑假作业快乐的假日系列答案
欣语文化快乐暑假沈阳出版社系列答案
暑假作业辽海出版社系列答案
暑假作业合肥工业大学出版社系列答案
小小全能王衔接教材内蒙古大学出版社系列答案
暑假作业本大象出版社系列答案
暑假期导航学年知识大归纳系列答案
新课堂假期生活寒假用书北京教育出版社系列答案
相关题目
如图,在平面直角坐标系中,已知点A(-3,6),点B,点C分别在x轴的负半轴和正半轴上,
OB,OC的长分别是方程x
2
-4x+3=0的两根(OB<OC).
(1)求B,C两点的坐标;
(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;
(3)若平面内有M(1,-2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.
(2012•遂宁)已知:如图,直线y=mx+n与抛物线
y=
1
3
x
2
+bx+c
交于点A(1,0)和点B,与抛物线的对称轴x=-2交于点C(-2,4),直线f过抛物线与x轴的另一个交点D且与x轴垂直.
(1)求直线y=mx+n和抛物线
y=
1
3
x
2
+bx+c
的解析式;
(2)在直线f上是否存在点P,使⊙P与直线y=mx+n和直线x=-2都相切.若存在,求出圆心P的坐标,若不存在,请说明理由;
(3)在线段AB上有一个动点M(不与点A、B重合),过点M作x轴的垂线交抛物线于点N,当MN的长为多少时,△ABN的面积最大,请求出这个最大面积.
下列命题中,原命题与逆命题均为真命题的个数是( )
①若a
2
=b
2
,则|a|=|b|;
②若x>0,则|x|=x;
③若函数y=
x-1
有意义,则x的取值范围是x>1;
④一组对边平行且对角线相等的四边形是矩形;
⑤若点P(2,a)和点Q(b,-3)关于x轴对称,则a-b的值为1.
A.1
B.2
C.3
D.4
【
观察发现
】
(1)如图1,若点A、B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.
作法如下:作点B关于直线l的对称点B′,连接AB′,与直线l的交点就是所求的点P.
(2)如图2,在等边三角形ABC中,AB=4,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
作法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
2
3
2
3
.
【
实践运用
】
如图3,菱形ABCD中,对角线AC、BD分别为6和8,M、N分别是边BC、CD的中点,若点P是BD上的动点,则MP+PN的最小值是
5
5
.
【
拓展延伸
】
(1)如图4,正方形ABCD的边长为5,∠DAC的平分线交DC于点E.若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是
5
2
2
5
2
2
;
(2)如图5,在四边形ABCD的对角线BD上找一点P,使∠APB=∠CPB.保留画图痕迹,并简要写出画法.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案