题目内容
如图,⊙O的直径AB⊥弦CD,垂足为点E,点P在优弧CAD上(不包含点C和点D),连PC、PD、CB,tan∠BCD=.
(1)求证:AE=CD;
(2)求sin∠CPD.
在图形的平移、旋转、轴对称变换中,其相同的性质是________.
如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
(1)求抛物线的解析式,并直接写出点D的坐标;
(2)当△AMN的周长最小时,求t的值;
(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.
如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A. 40° B. 50° C. 60° D. 70°
下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
已知函数y=,将此函数的图象记为P.若直线y=x+b与图形P恰有两个公共点,则b的值为_____.
在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3…,这样依次得到点A1、A2、A3、An、….若点A1(2,2),则点A2016的坐标为( )
A. (﹣2,0) B. (﹣1,3) C. (1,﹣1) D. (2,2)
计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )
A. 8.1×106 B. 8.1×105 C. 81×105 D. 81×104