题目内容
分解因式:
(1)-2xy-x2-y2;
(2)3ax2+6axy+3ay2;
(3)
x2-3y2;
(4)x4-81;
(5)(x2+y2)2-4x2y2;
(6)(x2-2y)2-(1-2y)2.
(1)-2xy-x2-y2;
(2)3ax2+6axy+3ay2;
(3)
| 1 | 3 |
(4)x4-81;
(5)(x2+y2)2-4x2y2;
(6)(x2-2y)2-(1-2y)2.
分析:(1)先提取公因式-1,再根据完全平方公式分解因式;
(2)先提取公因式3a,再根据完全平方公式分解因式;
(3)先提取公因式
,再根据平方差公式分解因式;
(4)两次运用平方差公式分解因式;
(5)先运用平方差公式分解因式,再运用完全平方公式分解因式;
(6)两次运用平方差公式分解因式.
(2)先提取公因式3a,再根据完全平方公式分解因式;
(3)先提取公因式
| 1 |
| 3 |
(4)两次运用平方差公式分解因式;
(5)先运用平方差公式分解因式,再运用完全平方公式分解因式;
(6)两次运用平方差公式分解因式.
解答:解:(1)-2xy-x2-y2
=-(2xy+x2+y2)
=-(x+y)2;
(2)3ax2+6axy+3ay2;
=3a(x2+2xy+y2)
=3a(x+y)2;
(3)
x2-3y2
=
(x2-9y2)
=
(x+3y)(x-3y);
(4)x4-81;
=(x2+9)(x2-9)
=(x2+9)(x+3)(x-3);
(5)(x2+y2)2-4x2y2;
=(x2+y2+2xy)(x2+y2-2xy)
=(x+y)2(x-y)2;
(6)(x2-2y)2-(1-2y)2.
=(x2-2y+1-2y)(x2-2y-1+2y)
=(x2-4y+1)(x2-1)
=(x2-4y+1)(x+1)(x-1).
=-(2xy+x2+y2)
=-(x+y)2;
(2)3ax2+6axy+3ay2;
=3a(x2+2xy+y2)
=3a(x+y)2;
(3)
| 1 |
| 3 |
=
| 1 |
| 3 |
=
| 1 |
| 3 |
(4)x4-81;
=(x2+9)(x2-9)
=(x2+9)(x+3)(x-3);
(5)(x2+y2)2-4x2y2;
=(x2+y2+2xy)(x2+y2-2xy)
=(x+y)2(x-y)2;
(6)(x2-2y)2-(1-2y)2.
=(x2-2y+1-2y)(x2-2y-1+2y)
=(x2-4y+1)(x2-1)
=(x2-4y+1)(x+1)(x-1).
点评:考查了因式分解-运用公式法,要注意公式的综合应用,分解到每一个因式都不能再分解为止.
练习册系列答案
相关题目