搜索
题目内容
已知直角三角形两条直角边长分别为10和20,则斜边长为________.
试题答案
相关练习册答案
分析:直接利用勾股定理求斜边长即可.
解答:由勾股定理得:
斜边=
=10
,
故答案为:10
.
点评:本题考查了勾股定理的运用.本题比较简单,关键是利用勾股定理求斜边.
练习册系列答案
新课标快乐提优暑假作业西北工业大学出版社系列答案
河南各地名校期末试卷精选系列答案
优等生练考卷单元期末冲刺100分系列答案
0系列答案
九年级毕业班综合练习与检测系列答案
单元练习组合系列答案
同步练习强化拓展系列答案
一课一练天津人民美术出版社系列答案
花山小状元课时练初中生100全优卷系列答案
一课一练文心出版社系列答案
相关题目
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2
;
(3)如图,已知
sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-
k
2
.
2-2
1-
k
2
.
.
下列各作图题中,可直接用“边边边”条件作出三角形的是( )
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______;
(3)如图,已知
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为______.
下列各作图题中,可直接用“边边边”条件作出三角形的是( )
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
下列各作图题中,可直接用“边边边”条件作出三角形的是
[ ]
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案