题目内容
考点:相似三角形的判定与性质,垂线段最短,勾股定理,平行四边形的性质
专题:压轴题
分析:以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.
解答:解:
∵∠BAC=90°,AB=3,AC=4,
∴BC=
=5,
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∵PQ最短也就是PO最短,
∴过O作BC的垂线OP′,
∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,
∴△CAB∽△CP′O,
∴
=
,
∴
=
,
∴OP′=
,
∴则PQ的最小值为2OP′=
,
故答案为:
.
∴BC=
| AC2+AB2 |
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∵PQ最短也就是PO最短,
∴过O作BC的垂线OP′,
∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,
∴△CAB∽△CP′O,
∴
| CO |
| BC |
| OP′ |
| AB |
∴
| 2 |
| 5 |
| OP′ |
| 3 |
∴OP′=
| 6 |
| 5 |
∴则PQ的最小值为2OP′=
| 12 |
| 5 |
故答案为:
| 12 |
| 5 |
点评:本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,解题的关键是做高线各种相似三角形.
练习册系列答案
相关题目
已知AB、CD是⊙O的直径,则四边形ACBD是( )
| A、正方形 | B、矩形 |
| C、菱形 | D、等腰梯形 |
| A、0个 | B、1个 | C、2个 | D、3个 |