题目内容
如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,-
).
(1)求该抛物线的解析式及点A的坐标;
(2)在抛物线上求点P,使S△POA=2S△AOB.
解:(1)由函数图象经过原点得,函数解析式为y=ax2+bx(a≠0),
又∵函数的顶点坐标为(3,-
),
∴
,
解得:
,
故函数解析式为:y=
x2-
x,
由二次函数图象的对称性可得点A的坐标为(6,0);
(2)∵S△POA=2S△AOB,
∴点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2
,
代入函数解析式得:2
=
x2-
x,
解得:x1=3+3
,x2=3-3
,
即满足条件的点P有两个,其坐标为:P1(3+3
,2
),P2(3-3
,2
).
分析:(1)根据函数经过原点,可得c=0,然后根据函数的对称轴,及函数图象经过点(3,-
)可得出函数解析式,根据二次函数的对称性可直接得出点A的坐标.
(2)根据题意可得点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2
,代入函数解析式可得出点P的横坐标.
点评:此题考查了二次函数的综合题目,涉及了待定系数法求函数解析式,三角形的面积及一元二次方程的解,综合性较强,需要我们仔细分析,分步解答.
又∵函数的顶点坐标为(3,-
∴
解得:
故函数解析式为:y=
(2)∵S△POA=2S△AOB,
∴点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2
代入函数解析式得:2
解得:x1=3+3
即满足条件的点P有两个,其坐标为:P1(3+3
分析:(1)根据函数经过原点,可得c=0,然后根据函数的对称轴,及函数图象经过点(3,-
(2)根据题意可得点P到OA的距离是点B到OA距离的2倍,即点P的纵坐标为2
点评:此题考查了二次函数的综合题目,涉及了待定系数法求函数解析式,三角形的面积及一元二次方程的解,综合性较强,需要我们仔细分析,分步解答.
练习册系列答案
相关题目