题目内容

(2013•番禺区一模)如图,已知E、F分别是平行四边形ABCD的边AB、CD上的两点,且∠CBF=∠ADE.
(1)求证:△ADE≌△CBF;
(2)判定四边形DEBF是否是平行四边形?
分析:(1)利用平行四边形ABCD的对角相等,对边相等的性质推知∠A=∠C,AD=BC;然后根据全等三角形的判定定理AAS证得结论;
(2)由“对边平行且相等的四边形是平行四边形”推知四边形DEBF是平行四边形.
解答:(1)证明:∵四边形ABCD为平行四边形,
∴∠A=∠C,AD=BC,
在△ADE与△CBF中,
∠ADE=∠CBF
∠A=∠C
AD=CB

∴△ADE≌△CBF(ASA);

(2)解:四边形DEBF是平行四边形.理由如下:
∵DF∥EB,又由△ADE≌△CBF,知AE=CF,
∴AB-AE=CD-CF,即DF=EB.
∴四边形DEBF是平行四边形.
点评:本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网