题目内容

如图,点A在反比例函数数学公式的图象上,点B在反比例函数数学公式的图象上,AB⊥x轴于点M,且AM:MB=1:2,则k的值为


  1. A.
    3
  2. B.
    -6
  3. C.
    2
  4. D.
    6
B
分析:连接OA、OB,先根据反比例函数的比例系数k的几何意义,可知S△AOM=,S△BOM=||,则S△AOM:S△BOM=3:|k|,再根据同底的两个三角形面积之比等于高之比,得出S△AOM:S△BOM=AM:MB=1:2,则3:|k|=1:2,然后根据反比例函数的图象所在的象限,即可确定k的值.
解答:解:如图,连接OA、OB.
∵点A在反比例函数的图象上,点B在反比例函数的图象上,AB⊥x轴于点M,
∴S△AOM=,S△BOM=||,
∴S△AOM:S△BOM=:||=3:|k|,
∵S△AOM:S△BOM=AM:MB=1:2,
∴3:|k|=1:2,
∴|k|=6,
∵反比例函数的图象在第四象限,
∴k<0,
∴k=-6.
故选B.
点评:本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积,难度中等,得到3:|k|=1:2,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网