题目内容
如图,点P,Q,R分别在△ABC的边上AB、BC、CA上,且BP=PQ=QR=RC=1,那么,△ABC面积的最大值是
- A.

- B.2
- C.

- D.3
B
分析:首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记△APR,△BPQ,△CRQ,△PQR,利用三角形内角和定理,求证:h2≤h1(h1,h2分别为△QRP,△APR公共边PR上的高.因若作出△PQR关于PR的对称图形PQ′R,这时Q′,A都在以PR为弦的含∠A的弓形弧上,且因PQ′=Q′R,所以Q′为这弧中点,故可得出h2≤h1).最后,当AB=AC-2,∠A=90°时,即可得出△ABC面积的最大值.
解答:
解:首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记△APR,△BPQ,△CRQ,△PQR,
则SⅡ,SⅢ,SⅣ均不大于
.
又∵∠PQR=180°-(∠B+∠C)=∠A,
∴h2≤h1(h1,h2分别为△QRP,△APR公共边PR上的高,因若作出△PQR关于PR的对称图形PQ′R,这时Q′,A都在以PR为弦的含∠A的弓形弧上,且因PQ′=Q′R,所以Q′为这弧中点,故可得出h2≤h1).
从而S1≤SⅣ≤
,这样S△ABC=SⅠ+SⅡ+SⅢ+SN≤
最后,当AB=AC-2,∠A=90°时,
S△ABC=2即可以达到最大值2.
故选B.
点评:此题主要考查学生对三角形面积的理解和掌握,但此题涉及的知识点较多,尤其是涉及到弧、弦、对称图形,是一道难题.
分析:首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记△APR,△BPQ,△CRQ,△PQR,利用三角形内角和定理,求证:h2≤h1(h1,h2分别为△QRP,△APR公共边PR上的高.因若作出△PQR关于PR的对称图形PQ′R,这时Q′,A都在以PR为弦的含∠A的弓形弧上,且因PQ′=Q′R,所以Q′为这弧中点,故可得出h2≤h1).最后,当AB=AC-2,∠A=90°时,即可得出△ABC面积的最大值.
解答:
则SⅡ,SⅢ,SⅣ均不大于
又∵∠PQR=180°-(∠B+∠C)=∠A,
∴h2≤h1(h1,h2分别为△QRP,△APR公共边PR上的高,因若作出△PQR关于PR的对称图形PQ′R,这时Q′,A都在以PR为弦的含∠A的弓形弧上,且因PQ′=Q′R,所以Q′为这弧中点,故可得出h2≤h1).
从而S1≤SⅣ≤
最后,当AB=AC-2,∠A=90°时,
S△ABC=2即可以达到最大值2.
故选B.
点评:此题主要考查学生对三角形面积的理解和掌握,但此题涉及的知识点较多,尤其是涉及到弧、弦、对称图形,是一道难题.
练习册系列答案
相关题目
| A、EF与AD互相平分 | ||
B、EF=
| ||
| C、AD平分∠BAC | ||
| D、△DEF∽△ACB |
| A、AD平分∠BAC | ||
B、EF=
| ||
| C、EF与AD互相平分 | ||
| D、△DFE是△ABC的位似图形 |