ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Å×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚA£¨-1£¬0£©¡¢B £¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬´ËÅ×ÎïÏߵĶԳÆÖáÓëÅ×ÎïÏßÏཻÓÚµãP£¬ÓëÖ±ÏßBCÏཻÓÚµãM£¬Á¬½ÓPB£®
£¨1£©ÇóµãC×ø±êÒÔ¼°¸ÃÅ×ÎïÏߵĹØÏµÊ½£»
£¨2£©Á¬½ÓAC£¬ÔÚxÖáÏ·½µÄÅ×ÎïÏßÉÏÓеãD£¬Ê¹S¡÷ABD=S¡÷ABC£¬ÇóµãDµÄ×ø±ê£»
£¨3£©Å×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Ö±½Óд³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨4£©ÔÚµÚÒ»ÏóÏÞ¡¢¶Ô³ÆÖáÓÒ²àµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãR£¬Ê¹¡÷RPMÓë¡÷RMBµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Ö±½Óд³öµãRµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
½â£º£¨1£©°ÑA£¨-1£¬0£©¡¢B £¨3£¬0£©´úÈëy=ax2+bx+3µÃ£º
£¬
½âµÃ£º
£¬
¡à¶þ´Îº¯ÊýʽΪy=-x2+2x+3£¬
Éèx=0£¬Ôòy=3£¬ËùÒÔCµÄ×ø±êÊÇ£¨0£¬3£©£»
£¨2£©ÓÉ£¨1£©¿ÉÖªÉèDµÄ×ø±êΪ£¨x£¬-x2+2x+3£©£¬
¡ßAB=4£¬OC=3£¬
¡àS¡÷ABC=
¡Á4¡Á3=6£¬
¡ßS¡÷ABD=S¡÷ABC£¬
¡à
•AB•|-x2+2x+3|=6£¬
¡ßDÔÚxÖáÏ·½µÄÅ×ÎïÏßÉÏ£¬
¡àDµÄ×ø±êÊÇ£¨1¡À
£¬3£©£»
£¨3£©ÓÉy=-x2+2x+3=-£¨x-1£©2+4£¬
Ôò¶¥µãP£¨1£¬4£©£¬¹²·ÖÁ½ÖÖÇé¿ö£¬Èçͼ1£º

¢ÙÓÉB¡¢CÁ½µã×ø±ê¿ÉÖª£¬Ö±ÏßBC½âÎöʽΪy=-x+3£¬
Éè¹ýµãPÓëÖ±ÏßBCƽÐеÄÖ±ÏßΪ£ºy=-x+b£¬
½«µãP£¨1£¬4£©´úÈ룬µÃy=-x+5£®
ÔòÖ±ÏßBC´úÈëÅ×ÎïÏß½âÎöʽÊÇ·ñÓн⣬ÓÐÔò´æÔÚµãQ£¬
¼´¿ÉµÃ£º-x2+2x+3=-x+5£¬
½â£ºx=1»òx=2£¬
´úÈëÖ±ÏßÔòµÃµã£¨1£¬4£©»ò£¨2£¬3£©£®
ÒÑÖªµãP£¨1£¬4£©£¬
ËùÒÔµãQ£¨2£¬3£©£®
¢ÚÓɶԳÆÖá¼°Ö±ÏßBC½âÎöʽ¿ÉÖªM£¨1£¬2£©£¬PM=2£¬
Éè¹ýP¡ä£¨1£¬0£©ÇÒÓëBCƽÐеÄÖ±ÏßΪy=-x+c£¬
½«P¡ä´úÈ룬µÃy=-x+1£®
ÁªÁ¢
£¬
½âµÃ£º
»ò
£¬
¹Ê¿ÉµÃ´æÔÚQËüµÄ×ø±êΪ£¨2£¬3£©»ò
»ò
£¬
£¨4£©ÓÉ£¨2£©¿ÉµÃ£ºM£¨1£¬2£©£¬Èçͼ2£º
ÓɵãM£¬PµÄ×ø±ê¿ÉÖªµãR´æÔÚ£¬¼´¹ýµãMƽÐÐÓÚxÖáµÄÖ±Ïߣ¬

Ôò¿ÉµÃ-x2+2x+3=2£¬
½âµÃx1=1-
£¨ÔÚ¶Ô³ÆÖáµÄ×ó²à£¬ÉáÈ¥£©£¬x2=1+
£¬
¼´µãR£¨1+
£¬2£©£®
·ÖÎö£º£¨1£©°ÑA£¨-1£¬0£©¡¢B £¨3£¬0£©Á½µãµÄ×ø±ê´úÈëy=ax2+bx+3¼´¿ÉÇó³öaºÍbµÄÖµ£¬½ø¶øÇó³öÅ×ÎïÏߵĽâÎöʽ£¬Éèx=0¿ÉÇó³öCµãµÄ×ø±ê£»
£¨2£©ÓÉ£¨1£©¿ÉÖªÉèDµÄ×ø±êΪ£¨x£¬-x2+2x+3£©£¬ÓÉÒÑÖªÌõ¼þÒ×ÇóS¡÷ABC£¬²¢ÇÒ¡÷ABDµÄ¸ßΪDµÄ×Ý×ø±êµÄ¾ø¶ÔÖµ£¬ËùÒԿɽ¨Á¢·½³ÌÇó³öxµÄÖµ¼´¿É£»
£¨3£©ÒòΪÁ½Èý½ÇÐεĵױßMBÏàͬ£¬ËùÒÔÖ»ÐèÂú×ãMBÉϵĸßÏàµÈ¼´¿ÉÂú×ãÌâÒ⣻
£¨4£©¸ù¾ÝÇ°ÃæËùÇó¿ÉµÃ³öµãMÊÇPP'µÄÖе㣬´Ó¶ø¹ýµãM×÷xÖáµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏߵĽ»µã¼´ÎªËùÇó£®
µãÆÀ£º´ËÌâÊôÓÚ¶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ½â¼°Èý½ÇÐεÄÃæ»ý£¬×ÛºÏÐÔ½ÏÇ¿£¬½â´ð±¾ÌâµÄÄѵãÔÚµÚÈýÎÊ£¬¹Ø¼üÊǸù¾ÝµãMÊÇPP'µÄÖеãÇó½â£¬ÄѶȽϴó£®
½âµÃ£º
¡à¶þ´Îº¯ÊýʽΪy=-x2+2x+3£¬
Éèx=0£¬Ôòy=3£¬ËùÒÔCµÄ×ø±êÊÇ£¨0£¬3£©£»
£¨2£©ÓÉ£¨1£©¿ÉÖªÉèDµÄ×ø±êΪ£¨x£¬-x2+2x+3£©£¬
¡ßAB=4£¬OC=3£¬
¡àS¡÷ABC=
¡ßS¡÷ABD=S¡÷ABC£¬
¡à
¡ßDÔÚxÖáÏ·½µÄÅ×ÎïÏßÉÏ£¬
¡àDµÄ×ø±êÊÇ£¨1¡À
£¨3£©ÓÉy=-x2+2x+3=-£¨x-1£©2+4£¬
Ôò¶¥µãP£¨1£¬4£©£¬¹²·ÖÁ½ÖÖÇé¿ö£¬Èçͼ1£º
¢ÙÓÉB¡¢CÁ½µã×ø±ê¿ÉÖª£¬Ö±ÏßBC½âÎöʽΪy=-x+3£¬
Éè¹ýµãPÓëÖ±ÏßBCƽÐеÄÖ±ÏßΪ£ºy=-x+b£¬
½«µãP£¨1£¬4£©´úÈ룬µÃy=-x+5£®
ÔòÖ±ÏßBC´úÈëÅ×ÎïÏß½âÎöʽÊÇ·ñÓн⣬ÓÐÔò´æÔÚµãQ£¬
¼´¿ÉµÃ£º-x2+2x+3=-x+5£¬
½â£ºx=1»òx=2£¬
´úÈëÖ±ÏßÔòµÃµã£¨1£¬4£©»ò£¨2£¬3£©£®
ÒÑÖªµãP£¨1£¬4£©£¬
ËùÒÔµãQ£¨2£¬3£©£®
¢ÚÓɶԳÆÖá¼°Ö±ÏßBC½âÎöʽ¿ÉÖªM£¨1£¬2£©£¬PM=2£¬
Éè¹ýP¡ä£¨1£¬0£©ÇÒÓëBCƽÐеÄÖ±ÏßΪy=-x+c£¬
½«P¡ä´úÈ룬µÃy=-x+1£®
ÁªÁ¢
½âµÃ£º
¹Ê¿ÉµÃ´æÔÚQËüµÄ×ø±êΪ£¨2£¬3£©»ò
£¨4£©ÓÉ£¨2£©¿ÉµÃ£ºM£¨1£¬2£©£¬Èçͼ2£º
ÓɵãM£¬PµÄ×ø±ê¿ÉÖªµãR´æÔÚ£¬¼´¹ýµãMƽÐÐÓÚxÖáµÄÖ±Ïߣ¬
Ôò¿ÉµÃ-x2+2x+3=2£¬
½âµÃx1=1-
¼´µãR£¨1+
·ÖÎö£º£¨1£©°ÑA£¨-1£¬0£©¡¢B £¨3£¬0£©Á½µãµÄ×ø±ê´úÈëy=ax2+bx+3¼´¿ÉÇó³öaºÍbµÄÖµ£¬½ø¶øÇó³öÅ×ÎïÏߵĽâÎöʽ£¬Éèx=0¿ÉÇó³öCµãµÄ×ø±ê£»
£¨2£©ÓÉ£¨1£©¿ÉÖªÉèDµÄ×ø±êΪ£¨x£¬-x2+2x+3£©£¬ÓÉÒÑÖªÌõ¼þÒ×ÇóS¡÷ABC£¬²¢ÇÒ¡÷ABDµÄ¸ßΪDµÄ×Ý×ø±êµÄ¾ø¶ÔÖµ£¬ËùÒԿɽ¨Á¢·½³ÌÇó³öxµÄÖµ¼´¿É£»
£¨3£©ÒòΪÁ½Èý½ÇÐεĵױßMBÏàͬ£¬ËùÒÔÖ»ÐèÂú×ãMBÉϵĸßÏàµÈ¼´¿ÉÂú×ãÌâÒ⣻
£¨4£©¸ù¾ÝÇ°ÃæËùÇó¿ÉµÃ³öµãMÊÇPP'µÄÖе㣬´Ó¶ø¹ýµãM×÷xÖáµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏߵĽ»µã¼´ÎªËùÇó£®
µãÆÀ£º´ËÌâÊôÓÚ¶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ½â¼°Èý½ÇÐεÄÃæ»ý£¬×ÛºÏÐÔ½ÏÇ¿£¬½â´ð±¾ÌâµÄÄѵãÔÚµÚÈýÎÊ£¬¹Ø¼üÊǸù¾ÝµãMÊÇPP'µÄÖеãÇó½â£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿