题目内容

y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是(  )
A、a≤-5B、a≥5C、a=3D、a≥3
分析:由于二次函数的顶点坐标不能确定,故应分对称轴不在[1,3]和对称轴在[1,3]内两种情况进行解答.
解答:解:第一种情况:
当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值,
x=
a-1
2
>3,即a>7,
第二种情况:
当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右边,因为如果在中点的左边的话,就是在x=3的地方取得最大值,即:
x=
a-1
2
1+3
2
,即a≥5(此处若a取5的话,函数就在1和3的地方都取得最大值)
综合上所述a≥5.
故选B.
点评:本题考查了二次函数的最值确定与自变量x的取值范围的关系,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网