题目内容
如图,在平行四边形ABCD中,AB=m,BC=n,AC的垂直平分线交AD于点E,则△CDE的周长是( )
A.m+n B.mn C.2(m+n) D.2(n﹣m)
规定:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点B的极坐标应记为( )
A.(,30°) B.(60°,)
C.(30°,4) D.(30°,)
已知a2﹣a﹣3=0,那么代数式的值是 .
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.
(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;
(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.
计算: x2y(2x+4y)= .
计算(﹣3)2的结果为( )
A.9 B.6 C.﹣9 D.﹣6
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).
①画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;
②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.
已知等腰直角△ABC中,∠BAC=90°,AB=AC=2,动点P在直线BC上运动(不与点B、C重合).
(1)如图1,点P在线段BC上,作∠APQ=45°,PQ交AC于点Q.
①求证:△ABP∽△PCQ;②当△APQ是等腰三角形时,求AQ的长.
(2)①如图2,点P在BC的延长线上,作∠APQ=45°,PQ的反向延长线与AC的延长线相交于点D,是否存在点P,使△APD是等腰三角形?若存在,写出点P的位置;若不存在,请简要说明理由;
②如图3,点P在CB的延长线上,作∠APQ=45°,PQ的延长线与AC的延长线相交于点Q,是否存在点P,使△APQ是等腰三角形?若存在,写出点P的位置;若不存在,请简要说明理由.
如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A.3.5 B.4 C.7 D.14