题目内容
在△ABC中,∠A=40°,∠B=50°,若按角来分类,则此三角形是________三角形.
直角
分析:在△ABC中,由于∠A=40°,∠B=50°,易求∠C=90°,从而可知△ABC是直角三角形.
解答:∵∠A=40°,∠B=50°,
∴∠C=180°-40°-50°=90°,
∴△ABC是直角三角形.
故答案是直角.
点评:本题考查了三角形内角和定理.解题的关键是知道三角形内角和等于180°.
分析:在△ABC中,由于∠A=40°,∠B=50°,易求∠C=90°,从而可知△ABC是直角三角形.
解答:∵∠A=40°,∠B=50°,
∴∠C=180°-40°-50°=90°,
∴△ABC是直角三角形.
故答案是直角.
点评:本题考查了三角形内角和定理.解题的关键是知道三角形内角和等于180°.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |