题目内容
| PQ |
分析:作OE⊥CD于点E,首先利用弧长公式求得圆心角∠COD的度数,得到△COD是直角三角形,根据三角形的面积公式即可求得OE的长,然后与半径的长度比较大小即可.
解答:解:如图,在⊙O中,半径OB=4,
设∠POQ为n°,则有
2π=
.
n=90°.
∴∠POQ=90°.
∵∠ADO=∠A,
∴AO=DO=6.
∴AB=10.
∵四边形ABCD是平行四边形,
∴DC=AB=10.
∴CO=8.
过点O作OE⊥CD于点E,
则OD×OC=OE×CD.
∴OE=4.8.
∵4.8>4,
∴直线DC与⊙O相离.
设∠POQ为n°,则有
2π=
| 8πn |
| 360 |
n=90°.
∴∠POQ=90°.
∵∠ADO=∠A,
∴AO=DO=6.
∴AB=10.
∵四边形ABCD是平行四边形,
∴DC=AB=10.
∴CO=8.
过点O作OE⊥CD于点E,
则OD×OC=OE×CD.
∴OE=4.8.
∵4.8>4,
∴直线DC与⊙O相离.
点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
练习册系列答案
相关题目