题目内容
分解因式:
如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:
(1)将△ABC向上平移4个单位,得到△ (不写作法,但要标出字母);
(2)将△ABC绕点O旋转180°,得到△(不写作法,但要标出字母);
(3)求点A绕着点O旋转到点所经过的路径长l.
如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.
(1)求抛物线的解析式;
(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.
如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )
A. 零上3℃ B. 零下3℃ C. 零上7℃ D. 零下7℃
如图在四边形BCDE中,,.已知CD=2,DE=1,则四边形BCDE的面积为______________
若a-2b=3,则2a-4b+1=___________
解方程组.
十二边形的外角和是( )
A. 180° B. 360° C. 1800° D. 2160°