题目内容

如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A

(1)求证:BC为⊙O的切线;

(2)求∠B的度数.

考点:

切线的判定与性质;菱形的性质.

分析:

(1)连结OA、OB、OC、BD,根据切线的性质得OA⊥AB,即∠OAB=90°,再根据菱形的性质得BA=BC,然后根据“SSS”可判断△ABC≌△CBO,则∠BOC=∠OAC=90°,于是可根据切线的判定方法即可得到结论;

(2)由△ABC≌△CBO得∠AOB=∠COB,则∠AOB=∠COB,由于菱形的对角线平分对角,所以点O在BD上,利用三角形外角性质有∠BOC=∠ODC+∠OCD,则∠BOC=2∠ODC,

由于CB=CD,则∠OBC=∠ODC,所以∠BOC=2∠OBC,根据∠BOC+∠OBC=90°可计算出∠OBC=30°,然后利用∠ABC=2∠OBC计算即可.

解答:

(1)证明:连结OA、OB、OC、BD,如图,

∵AB与⊙切于A点,

∴OA⊥AB,即∠OAB=90°,

∵四边形ABCD为菱形,

∴BA=BC,

在△ABC和△CBO中

∴△ABC≌△CBO,

∴∠BOC=∠OAC=90°,

∴OC⊥BC,

∴BC为⊙O的切线;

(2)解:∵△ABC≌△CBO,

∴∠AOB=∠COB,

∵四边形ABCD为菱形,

∴BD平分∠ABC,CB=CD,

∴点O在BD上,

∵∠BOC=∠ODC+∠OCD,

而OD=OC,

∴∠ODC=∠OCD,

∴∠BOC=2∠ODC,

而CB=CD,

∴∠OBC=∠ODC,

∴∠BOC=2∠OBC,

∵∠BOC+∠OBC=90°,

∴∠OBC=30°,

∴∠ABC=2∠OBC=60°.

点评:

本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了全等三角形相似的判定与性质以及菱形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网