题目内容
| CPD |
| A、30° | B、45° |
| C、60° | D、90° |
分析:连接OA、OB,根据相切得到∠OAE=∠OBE=90°,根据等边三角形的性质得出∠E=60°,求出∠AOB,根据圆周角定理即可求出∠APB.
解答:
解:连接OA、OB,
∵⊙O与菱形的四条边都相切,A、B、C、D为四个切点,
∴OA⊥AE,OB⊥BE,
∴∠OAE=∠OBE=90°,
∵两个全等的等边三角形拼成一个菱形,
∴∠E=60°,∠AOB═360°-∠OAE-∠0BE-∠E=120°,
∴∠APB=
∠AOB=60°.
故选C.
∵⊙O与菱形的四条边都相切,A、B、C、D为四个切点,
∴OA⊥AE,OB⊥BE,
∴∠OAE=∠OBE=90°,
∵两个全等的等边三角形拼成一个菱形,
∴∠E=60°,∠AOB═360°-∠OAE-∠0BE-∠E=120°,
∴∠APB=
| 1 |
| 2 |
故选C.
点评:本题主要考查对等边三角形的性质,圆周角定理,多边形的内角和定理,切线的性质等知识点的理解和掌握,求出∠AOB的度数是解此题的关键.
练习册系列答案
相关题目