题目内容
如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为 cm.
![]()
考点:
翻折变换(折叠问题);轴对称的性质..
专题:
压轴题.
分析:
由题意得AE=AE′,AD=AD′,故阴影部分的周长可以转化为三角形ABC的周长.
解答:
解:将△ADE沿直线DE折叠,点A落在点A′处,
所以AD=A′D,AE=A′E.
则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,
=BC+BD+CE+AD+AE,
=BC+AB+AC,
=3cm.
点评:
折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.
练习册系列答案
相关题目