题目内容
已知一次函数满足下列条件,分别求出,的取值范围.
使得随增加而减小.
使得函数图象与轴的交点在轴的上方.
使得函数图象经过一、三、四象限.
计算
(1)(- 5)+ 6
(2)(+21)+(-31)
(3)(- 5.2 ) + ( - 1.2 )
(4)(﹣3)+7+(﹣6)+(﹣7)
(5)(- 20 ) +(-14)+(-28)+16
(6)5.6+(﹣0.9)+4.4+(﹣8.1)
(7)30 + 15+(-7)+(-15)
(8).
已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是【 】
A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6
C.有最小值0、最大值6 D.有最小值2、最大值6
已知二次函数的图象与x轴有两个交点,则的取值范围是_____________
下列函数中,当x>0时,y随x的增大而减小的是( )
A. y= B. y= C. y=3x+2 D. y=x2﹣3
某市出租车收费标准如下:起租费:元;基价里程:公里;等时费:每等分钟加收公里的租价;租价:每公里元.星期天,某同学从家出发坐出租车去火车站接一朋友回家.如图表示该同学离家距离与离家时间的关系如图所示,则该同学最少应付车费________元.(注:公里千米)
货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的图象是( )
A. B.
C. D.
如图D、E、F分别在△ABC的三边上,BD=AB,BE:EC=1:2,AC的长度是FC的3倍,四边形ADEF的面积是24,则△EFC的面积是_________.
某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.