题目内容

在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是________.

垂直
分析:a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.根据此规律可求a1与a2002的位置关系是垂直.
解答:∵a1与后面的直线按垂直、垂直、平行、平行每4条直线一循环.∴(2002-1)÷4=500余1,
故答案为垂直.
点评:本题难点在规律的探索,要认真观察即可得出规律.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网