题目内容
已知:如图, 中, 求作:⊙,使⊙与、边都相切边上.(要求:用尺规作图,并写出作法)
将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连结这个正六边形的各边中点,又形成一个新正六边形,则这个新正六边形的面积等于( )
A. B. C. D.
()计算: .
()先化简,再求值: ,其中.
()解方程组: .
把多项式分解因式,得,则,的值分别是( ).
A. , B. , C. , D. ,
如图,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字,,,,如图,正方形顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图起跳,第一次掷得,就顺时针连续跳个边长,落到圈;若第二次掷得,就从开始顺时针连续跳个边长,落到圈;设游戏者从圈起跳.
()嘉嘉随机掷一次骰子,求落回到圈的概率.
()淇淇随机掷两次骰子,用列表法求最后落回到圈的概率,并指出她与嘉嘉落回到圈的可能性一样吗?
如图,已知反比例函数的图象与一次函数的图象相交于、两点,并且点的纵坐标是,则点的坐标为__________.
如图,在中, , , 、分别是、的角平分线,则图中的等腰三角形有( ).
A. 个 B. 个 C. 个 D. 个
已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).
(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为 ( )
A. 3 B. 2 C. 0 D. -1