题目内容

(2004•呼和浩特)如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=
12
DC.
分析:连接BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出∠A=∠C=∠ABD=30°,再求出∠DBC=90°,再根据直角三角形30°所对的直角边等于斜边的一半即可得证.
解答:解:如图,连接DB.
∵MN是AB的垂直平分线,
∴AD=DB,
∴∠A=∠ABD,
∵BA=BC,∠B=120°,
∴∠A=∠C=
1
2
(180°-120°)=30°,
∴∠ABD=30°,
又∵∠ABC=120°,
∴∠DBC=120°-30°=90°,
∴BD=
1
2
DC,
∴AD=
1
2
DC.
点评:本题考查了30°角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,作出辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网