题目内容
因式分【解析】—4x= .
已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.
(1)试猜想AE与BD有何关系?并且直接写出答案.
(2)若△ABC的面积为4cm2,求四边形ABDE的面积;
(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.
一元二次方程的两根为x1、x2,则x1+x2=
(本题满分8分)有5张形状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D,E和一个等式,背面完全一致. 现将5张卡片分成两堆,第一堆:A,B,C;第二堆:D,E,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片,背面向上洗匀.
(1)请用画树形图或列表法表示出所有可能结果;(卡片可用A,B,C,D,E表示)
(2)将“第一张卡片上x的值是第二张卡片中方程的解”记作事件M,求事件M的概率.
如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= .
如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( )
A.35° B.55° C.25° D.30°
(满分10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )
A.2.5 B.5 C.10 D.15
一个正多边形的内角和是其外角和的2倍,则这个正多边形的边数是 _________ .