题目内容
如图,OC是⊙O的半径,AB是弦,OC⊥AB,点P在⊙O上,∠APC=23°,则∠AOB=_____.
如图,,要使四边形ABCD成为平行四边形还需要添加的条件是______只需写出一个即可
已知M=,N=()﹣1,当a:b=3:2时,求M+N的值.
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
计算(1)(﹣)0++|2﹣|
(2)(﹣)÷+(2+)(2﹣)
“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为( )
A. B.
C. D.
如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为( )
A. 3cm B. 7cm C. 3cm或7cm D. 5cm或2cm
观察一列单项式:a,﹣2a2,4a3,﹣8a4,…,根据你发现的规律,第10个单项式为_____.