题目内容
估计介于( )
A.0.4与0.5之间 B.0.5与0.6之间
C.0.6与0.7之间 D.0.7与0.8之间
如图,EF∥AD,∠1=∠2.求证:DG∥AB.
已知(x+a)(x+b)=x2﹣13x+36,则a+b=( )
A.﹣5 B.5 C.﹣13 D.﹣13或5
已知最简二次根式与是同类二次根式,则a+b的值为 .
等腰三角形的两条边长分别为2和5,那么这个三角形的周长为( )
A.4+5 B.2+10
C.4+5或2+10 D.4+10
日前一名男子报警称,在菲律宾南部发现印有马来西亚国旗的飞机残骸,怀疑是失联的马航MH370客机,马来西亚警方立即派出直升机前去查证.飞机在空中A点看见残骸C的俯角为20°,继续沿直线AE飞行16秒到达B点,看见残骸C的俯角为45°,已知飞机的飞行度为3150米/分.
(参考数据:tan20°≈0.3,cos20°≈0.9,sin20°≈0.2)
(1)求残骸到直升机航线的垂直距离CD为多少米?
(2)在B点时,机组人员接到总指挥部电话,8分钟后该海域将迎来比较大的风浪,为了能及时观察取证,机组人员决定飞行到D点立即空投设备,将残骸抓回机舱(忽略风速对设备的影响),己知设备在空中的降落与上升速度均为700米/分.设备抓取残骸本身需要6分钟,请问能否在风浪来临前将残骸抓回机舱?请说明理由.
有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程+=2的解为正数,且不等式组无解的概率是 .
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.
(1)求抛物线的解析式;
(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;
(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.
在一条笔直的公路上,依次有A、C、B三地.小明从A地途经C地前往距A地20千米的B地,到B地休息一段时间后立即按原路返回到A地.小明出发4小时的时候距离A地12千米.小明去时从C地到B地,返回时再由B地到C地(包括在B地休息的时间)共用2小时.他与A地的距离s(单位:千米)和所用的时间t(单位:小时)之间的函数关系如图所示.下列说法:①小明去时的速度为10千米/时;②小明在B地休息了小时;③小明回来时的速度为6千米/时;④C地与A地的距离为15千米,其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个