题目内容
【题目】如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q ![]()
(1)若BP=
,求∠BAP的度数;
(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;
(3)以PQ为直径作⊙M. ①判断FC和⊙M的位置关系,并说明理由;
②当直线BD与⊙M相切时,直接写出PC的长.
【答案】
(1)解:∵四边形ABCD是正方形,
∴∠ABP=90°,
∴tan∠BAP=
=
=
,
∵tan30°=
,
∴∠BAP=30°
(2)解:如图1,设PC=x,则BP=1﹣x,
∵△FGC≌△QCP,
∴GC=PC=x,DG=1﹣x,
∵∠BDC=45°,∠FGD=90°,
∴△FGD是等腰直角三角形,
∴FG=DG=CQ=1﹣x,
∵AB∥DQ,
∴
,
∴
,
∴x=(1﹣x)2,
解得:x1=
>1(舍去),x2=
,
∴PC= ![]()
![]()
(3)解:①如图2,当点P在线段BC上时,FC与⊙M相切,理由是:
取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,
∵∠PCQ=90°,PQ为直径,
∴点C是圆M上,
∵△PCQ为直角三角形,
∴MC=PM,
∴∠MCP=∠MPC,
∵∠APB=∠MPC,
∴∠MCP=∠APB,
∵∠APB+∠BAP=90°,
∴∠MCP+∠BAP=90°,
∵AD=DC,∠ADB=∠CDB,FD=FD,
∴△ADF≌△CDF,
∴∠FAD=∠FCD,
∵∠BAP+∠FAD=∠BCF+∠FCD,
∴∠BAP=∠BCF,
∴∠MCP+∠BCF=90°,
∴FC⊥CM,
∴FC与⊙M相切;
如图3,当点P在线段BC的延长线上时,FC与⊙M也相切,理由是:
取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,
同理得∠AQD=∠MCQ,点C是圆M上,
∵AD=DC,∠BDA=∠CDB=45°,DF=DF,
∴△ADF≌△CDF,
∴∠FAD=∠FCD,
∵∠AQD+∠FAD=90°,
∴∠MCD+∠FCD=90°,
∴FC⊥MC,
∴FC与⊙M相切;
:②当点P在线段BC上时,如图4,
设⊙M切BD于E,连接EM、MC,
∴∠MEF=∠MCF=90°,
∵ME=MC,MF=MF,
∴△MEF≌△MCF,
∴∠QFC=∠QFE,
∵∠BAP=∠Q=∠BCF,
设∠Q=x,则∠BAP=∠BCF=x,∠QFE=∠QFC=45°+x,∠DFC=45°+x,
∵∠QFE+∠QFC+∠DFC=180°,
∴3(45+x)=180,
x=15,
∴∠Q=15°,
∴∠BAP=15°,
作AP的中垂线HN,交AB于H,交AP于N,
∴AH=AP,
∴∠BHP=30°,
设BP=x,则HP=2x,HB=
x,
∴2x+
x=1,
x=2﹣
,
∴PC=BC﹣BP=1﹣(2﹣
)=
﹣1;
当点P在点C的右侧时(即在线段BC的延长线上),如图5,
同理可得:PC=
+1;
综上所述:PC=
﹣1或
+1.
![]()
![]()
![]()
![]()
【解析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得
,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF, 得∠FAD=∠FCD,则∠BAP=∠BCF,所以得出∠MCP+∠BCF=90°,FC⊥CM;
如图3,当点P在线段BC的延长线上时,FC与⊙M相切,同理可得∠MCD+∠FCD=90°,则FC⊥CM,FC与⊙M相切;②当点P在线段AB上时,如图4,设⊙M切BD于E,连接EM、MC,设∠Q=x,根据平角BFD列方程求出x的值,作AP的中垂线HN,得∠BHP=30°,在Rt△BHP中求出BP的长,则得出PC=
﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=
+1.