题目内容
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
(1)AD是⊙O的切线吗?说明理由;
(2)若OD⊥AB,BC=5,求AD的长;
(3)在(2)的前提下,连接BD,则BD和⊙O及AD有何关系?简要说明理由.

(1)AD是⊙O的切线吗?说明理由;
(2)若OD⊥AB,BC=5,求AD的长;
(3)在(2)的前提下,连接BD,则BD和⊙O及AD有何关系?简要说明理由.
(1)AD是⊙O的切线.
理由:连接AD,
∵∠B=30°,
∴∠AOD=2∠B=60°,
∵∠D=30°,
∴∠OAD=90°,
即OA⊥AD,
∴AD是⊙O的切线;
(2)∵OD⊥AB,BC=5,
∴AC=BC=5,
∵OA=OC,∠AOC=60°,
∴△AOC是等边三角形,
∴OA=AC=5,
∵OA⊥AD,∠D=30°,
∴OD=2OA=10,
∴AD=
=5
;
(3)连接OB,
∵OD⊥AB,
∴BE=AE,
∴AD=BD,
在△OBD和△OAD中,
,
∴△OBD≌OAD(SSS),
∴∠OBD=∠OAD=90°,
即OB⊥BD,
∴BD是⊙O的切线.
理由:连接AD,
∵∠B=30°,
∴∠AOD=2∠B=60°,
∵∠D=30°,
∴∠OAD=90°,
即OA⊥AD,
∴AD是⊙O的切线;
∴AC=BC=5,
∵OA=OC,∠AOC=60°,
∴△AOC是等边三角形,
∴OA=AC=5,
∵OA⊥AD,∠D=30°,
∴OD=2OA=10,
∴AD=
| OD2-OA2 |
| 3 |
(3)连接OB,
∵OD⊥AB,
∴BE=AE,
∴AD=BD,
在△OBD和△OAD中,
|
∴△OBD≌OAD(SSS),
∴∠OBD=∠OAD=90°,
即OB⊥BD,
∴BD是⊙O的切线.
练习册系列答案
相关题目