题目内容

如果一个正多边形的每个内角比它相邻的外角的4倍还多30°,求这个多边形的边数及内角和.

解:设内角是x°,外角是y°,
则得到一个方程组
解得
而任何多边形的外角是360°,
则多边形内角和中的外角的个数是360÷30=12,
则这个多边形的边数是12边形,内角和为(12-2)×180°=1800°.
故这个多边形的边数为12,内角和为1800°.
分析:一个正多边形的每个内角比它相邻的外角的4倍还多30°,又由于内角与外角的和是180度.设内角是x°,外角是y°,列方程组求解,再根据多边形的外角和与内角和定理求解.
点评:本题根据多边形的内角与外角的关系转化为方程组的问题,并利用了多边形的外角和与内角和定理;已知外角求边数的这种方法是需要熟记的内容.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网