题目内容
【题目】如图,把
绕着点
顺时针方向旋转角度
(
),得到
,若
,
,
三点在同一条直线上,
,则
的度数是___________.
![]()
【答案】![]()
【解析】
首先根据邻补角定义求出∠BCC′=180°-∠BCB′=134°,再根据旋转的性质得出∠BCA=∠C′,AC=AC′,根据等边对等角进一步可得出∠BCA=∠ACC′=∠C′,再利用三角形内角和求出∠CAC′的度数,从而得出α的度数..
解:∵B,C,C′三点在同一条直线上,∴∠BCC′=180°-∠BCB′=134°,
又根据旋转的性质可得,
∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,
∴∠ACC′=∠C′,
∴∠BCA=∠ACC′=
∠BCC′=67°=∠C′,
∴∠CAC′=180°-∠ACC′-∠C′=46°,
∴α=46°.
故答案为:46°.
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量
(辆
小时)指单位时间内通过道路指定断面的车辆数;速度
(千米
小时)指通过道路指定断面的车辆速度,密度
(辆
千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量
与速度
之间关系的部分数据如下表:
速度v(千米/小时) |
|
|
|
|
|
|
|
|
流量q(辆/小时) |
|
|
|
|
|
|
|
|
(1)根据上表信息,下列三个函数关系式中,刻画
,
关系最准确是_____________________.(只填上正确答案的序号)
①
;②
;③![]()
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知
,
,
满足
,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当
时道路出现轻度拥堵.试分析当车流密度
在什么范围时,该路段将出现轻度拥堵?
【题目】一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:
会员年卡类型 | 办卡费用(元) | 每次游泳收费(元) |
A 类 | 50 | 25 |
B 类 | 200 | 20 |
C 类 | 400 | 15 |
例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )
A.购买A类会员卡B.购买B类会员年卡
C.购买C类会员年卡D.不购买会员年卡