题目内容

如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1    S2;(填“>”或“<”或“=”)
【答案】分析:根据矩形的性质,首先设矩形的边长分别为a,b,S1的边长分别为x,y,利用比例得出xy=ab-by.要使矩形的面积最大,故让S1的边长分别是△ABC,△ADC的中位线,得出边长的值,然后求出面积即可(也可用矩形的对角线平分矩形的面积分析得出答案).
解答:解:设矩形ABCD的边长分别为a,b,S1的边长分别为x,y.
∵MK∥AD
=,即,则x=•a.
同理:y=•b.
则S1=xy=ab.
同理S2=ab.
所以S1=S2.故答案为S1=S2
点评:本题的关键是利用函数分析最大取值,即都是三角形的中位线.然后利用三角形的面积公式即可求得相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网